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Abstract We establish a characterization of coagulation-fragmentation processes, such that
the induced birth and death processes depicting the total number of groups at time t ≥ 0
are time homogeneous. Based on this, we provide a characterization of mean-field Gibbs
coagulation-fragmentation models, which extends the one derived by Hendriks et al. As a
by-product of our results, the class of solvable models is widened and a question posed by
N. Berestycki and Pitman is answered, under restriction to mean-field models.

Keywords Time dynamics · Coagulation-fragmentation models · Gibbs distributions on
the set of integer partitions

1 Introduction, Objective and the Context

The time dynamics of a time homogeneous Markov process X(t), t ≥ 0 on a space � = {η}
of states η is described by the set of transition probabilities

pζ̃ (η; t) := P(X(t) = η | X(0) = ζ̃ ), ζ̃ , η ∈ �, t ≥ 0.

Given the rates of the infinitesimal state transitions, the explicit expressions for the transition
probabilities pζ̃ as solutions of a Kolmogorov system, are known only for a few special
cases of the rates. The corresponding models are called solvable. For the above reason, time
dynamics of Markov processes remain, generally speaking, a mystery. As an example, even
for birth-death processes on the set of integers, the explicit solutions have been derived
only for a few combinations of birth and death rates. This explains why the direction of
research in this area turned to the estimation of the rate of convergence (=spectral gap) of
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the transition probabilities as t → ∞. Nevertheless, hunting for solvable models continues
to be of interest.

In the present paper we pursue the above objective for stochastic processes of coagula-
tion and fragmentation (CFP’s). We adopt the formulation of a CFP = CFP(N) given in [5]
on the basis of classic works of Whittle [25] and Kelly [14] devoted to deterministic and sto-
chastic models of clustering in polymerization, electrical networks and in a variety of other
fields. A CFP XN(t), t ≥ 0 is defined as a time homogeneous Markov chain on the state
space �N of all partitions η = (n1, . . . , nN) : ∑N

i=1 ini = N, of a given integer N . Here N

codes the total population of indistinguishable particles partitioned into groups (=clusters)
of different sizes, while ni is the number of groups of size i. Infinitesimal (in time) events
are a coagulation of two groups into one and a fragmentation of one group into two groups,
and the basic assumption is that the rates (intensities) of the above two single transitions
depend only on sizes of groups (and do not depend on N ). Namely, the rate of a single coag-
ulation of two groups of sizes i and j , such that 2 ≤ i + j ≤ N , into one group of size i + j

is ψ(i, j), whereas the rate of a single fragmentation of a group with size i + j into two
groups of sizes i and j is φ(i, j). The functions ψ and φ are assumed to be non negative
and symmetric in i, j .

Next, we define the induced rates of infinitesimal state transitions. Given a state η ∈ �N

with ni, nj > 0 for some 1 ≤ i, j ≤ N, denote by η(i,j) ∈ �N the state that is obtained from
η by a coagulation of any two groups of sizes i and j , and denote by K(η → η(i,j)) the
rate of the infinitesimal state transition η → η(i,j). Similarly, for a given state η ∈ �N with
ni+j > 0, let η(i,j) be the state that is obtained from η by a fragmentation of a group of
size i + j ≥ 2 into two groups of sizes i and j, and let F(η → η(i,j)) be the rate of the
infinitesimal state transition η → η(i,j). We assume that the rate K(η → η(i,j)) is equal to
the sum of rates of all single coagulations of ni groups with size i with nj groups with size j ,
and that F(η → η(i,j)) is the sum of rates of all single fragmentations of ni+j groups with
size i + j into two groups of sizes i and j . As a result, we get the following expressions for
the rates of state transitions:

K(η → η(i,j)) = ninjψ(i, j), i �= j, 2 ≤ i + j ≤ N,

K(η → η(i,i)) = ni(ni − 1)

2
ψ(i, i), 2 ≤ 2i ≤ N, (1.1)

F(η → η(i,j)) = ni+jφ(i, j), 2 ≤ i + j ≤ N.

We note that an interpretation of the coagulation kernel K in terms of the kinetics of droplets
of different masses can be found in [19].

Following [11], we call CFP’s with rates of state transitions of the form (1.1) mean field
models, meaning that at any state η ∈ �N, any group can coagulate with any other one
or can be fragmented into any two parts. We also note that a characterization of positive
rates of single transitions ψ(i, j),φ(i, j) that provide reversibility of mean-field CFP’s is
known ([5]).

We now describe briefly the context of the present paper. The paper is devoted to the
time evolution of the above mean field CFP’s and it consists of two sections. Section 2 is
divided into three subsections. In Sect. 2.1 we characterize the CFP’s XN(t), t ≥ 0 having
time homogeneous processes |XN(t)|, t ≥ 0 depicting the total number of groups at time
t ≥ 0. The key result of the paper, stated precisely in Theorem 1 in Sect. 2.2, establishes the
equivalence of the following two conditions:

(i) The birth and death process |XN(t)|, t ≥ 0 is time homogeneous;
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(ii) The conditional distribution of a CFP(N), given a total number of groups at time t ≥ 0,

is a time independent Gibbs distribution on the set of partitions of N with given number
of components.

Consequently, a characterization of Gibbs CFP’s, which extends the one by Hendriks
et al. [13], is derived.

In Sect. 2.3 we discuss the following three topics related to our main result: Steady state
distributions of CFP’s, Gibbs CFP’s on set partitions and Spectral gaps of Gibbs CFP’s. In
particular, under restriction to mean-field models, we obtain a negative answer to a question
posed by N. Berestycki and Pitman [4] about the existence of certain Gibbs CFP’s.

2 Main Result

We say that states η, η̃ ∈ �N are neighbors: η̃ ∼ η, if one of the states is obtained either by
a single coagulation or a single fragmentation of components of the other state. Then the
preceding description of a CFP(N), say X

(ρ)

N (t), t ≥ 0, starting from an initial probability
distribution ρ on �N allows us to write the corresponding Kolmogorov system as follows

ṗρ(η; t) = −pρ(η; t)
(∑

η̃∼η

(
K(η → η̃) + F(η → η̃)

)
)

+
∑

η̃∼η

pρ(η̃; t)(K(η̃ → η) + F(η̃ → η)
)
, η̃, η ∈ �N, t ≥ 0. (2.1)

Note that the seminal system of Smoluchowski equations (1918) for pure coagulation can
be viewed as an approximation to (2.1) obtained by neglecting correlations between group
numbers at time t ≥ 0. This issue is widely discussed in the literature (see [1, 5, 8, 20]).

2.1 Process of the Total Number of Groups

In our study of time dynamics of a CFP X
(ρ)

N (t) = (n1(t), . . . , nN(t)) ∈ �N, t ≥ 0, a central
role is played by the induced stochastic process

|X(ρ)

N (t)| :=
N∑

i=1

ni(t), t ≥ 0, (2.2)

which depicts the total number of groups in the generic CFP at time t ≥ 0. We denote
throughout the paper

�N,r = {η ∈ �N : |η| = r}, r = 1, . . . ,N

the set of all partitions of N with exactly r components.
It follows from the definition of a CFP(N) that |X(ρ)

N (t)|, t ≥ 0 is a Markov birth and
death process on the state space {1,2, . . . ,N}, with rates of birth and death λr,N , 1 ≤ r ≤
N −1, μr,N , 2 ≤ r ≤ N, respectively, defined in a usual way, as in (2.3) below. However, in
contrast to the generic CFP(N), the process |X(ρ)

N (t)|, t ≥ 0 is, in general, not homogeneous
in time, which presents a big problem for the investigation of the process.

The following example demonstrates the phenomenon of dependence of the rates
λr,N ,μr,N on time t ≥ 0 and on an initial distribution ρ of the generic CFP(N), that causes
the time-inhomogeneity of the induced birth and death process.
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Example 1 Consider a CFP(N), N > 4 of pure coagulation with ψ(1,1) = ψ(1,2) = 0 and
all other ψ(i, j) > 0. It is clear that �N,N−2 = η1 ∪ η2, where η1 = (N − 3,0,1,0, . . . ,0),

η2 = (N − 4,2,0, . . . ,0). Assuming that the process starts from an initial distribu-
tion ρ on �N,N−2, s.t. ρ(ηi) = pi > 0, i = 1,2, p1 + p2 = 1 and denoting Ai =∑

ζ∈�N,N−3
K(ηi → ζ ) > 0, i = 1,2, we have

ṗρ(ηi; t) = −Aipρ(ηi; t), t ≥ 0, i = 1,2,

since the transitions �N,N−1 → ηi, i = 1,2 are impossible. Hence,

pρ(ηi; t) = pie
−Ai t , t ≥ 0, i = 1,2

and consequently, it follows from (2.7) below that the rate of death

μN−2,N (t;ρ) = A1e
−A1tp1 + A2e

−A2tp2

e−A1tp1 + e−A2tp2
, t ≥ 0

depends on ρ and t iff A1 = (N − 3)ψ(1,3) �= A2 = ψ(2,2).

We further assume that the CFP’s considered are ergodic.
We first distinguish CFP’s(N) which induce time homogeneous processes |X(ρ)

N (t)|,
t ≥ 0, under any initial distribution ρ on �N, i.e. processes with birth and death rates not
depending on t ≥ 0 and ρ. Let λr,N (t;ρ), 1 ≤ r ≤ N − 1 and μr,N (t;ρ), 2 ≤ r ≤ N be,
respectively, the rates of birth and death at time t ≥ 0, of some |X(ρ)

N (t)|:

λr,N (t;ρ) = lim
	t→0+

P(|X(ρ)

N (t + 	t)| = r + 1 | |X(ρ)

N (t)| = r)

	t
,

(2.3)

μr,N (t;ρ) = lim
	t→0+

P(|X(ρ)

N (t + 	t)| = r − 1 | |X(ρ)

N (t)| = r)

	t
.

Equation (2.3) tells us that under the assumption of ergodicity of the generic CFP(N), the
time independence of birth and death rates implies their independence on ρ.

Clearly, the birth and death rates in (2.3) are implied respectively, by the rates ψ of
single fragmentations and the rates φ of single coagulations of the generic CFP(N). It turns
out that the required necessary and sufficient condition of time homogeneity of the process
|X(ρ)

N (t)|, t ≥ 0 has a simple probabilistic meaning.

Lemma 1 |X(ρ)

N (t)|, t ≥ 0 is a time homogeneous birth and death process under any initial
distribution ρ on �N, if and only if the generic CFP(N) is such that for a given 1 ≤ r ≤ N

the sums of rates
∑

η̃∼η K(η → η̃), η ∈ �N,r and
∑

η̃∼η F (η → η̃), η ∈ �N,r do not depend
on η ∈ �N,r . Under the above condition, the first sum and the second sum are equal to the
rate of death μr,N and to the rate of birth λr,N respectively, so that for any η ∈ �N,r ,

λr,N = lim
	t→0+

1

	t
P
(
|X(ρ)

N (t + 	t)| = r + 1 | X(ρ)

N (t) = η
)
, 1 ≤ r ≤ N − 1,

(2.4)

μr,N = lim
	t→0+

1

	t
P
(
|X(ρ)

N (t + 	t)| = r − 1 | X(ρ)

N (t) = η
)
, 2 ≤ r ≤ N,

under any initial distribution ρ on �N and all t ≥ 0.



On Time Dynamics of Coagulation-Fragmentation Processes 571

Proof Recalling that |X(ρ)

N (t)|, t ≥ 0 is Markov, by the Markovian property of the generic
CFP(N), we firstly assume that |X(ρ)

N (t)|, t ≥ 0 is time homogeneous, so that for all ρ on
�N and all t ≥ 0, λr,N (t;ρ) = λr,N , 1 ≤ r ≤ N − 1 and μr,N(t;ρ) = μr,N , 2 ≤ r ≤ N. We
now rewrite (2.3) as

λr,N = lim
	t→0+

1

	t

∑
η∈�N,r

P(|X(ρ)

N (t + 	t)| = r + 1 | X(ρ)

N (t) = η)P(X
(ρ)

N (t) = η)

P(|X(ρ)

N (t)| = r)
,

1 ≤ r ≤ N − 1,
(2.5)

μr,N = lim
	t→0+

1

	t

∑
η∈�N,r

P(|X(ρ)

N (t + 	t)| = r − 1 | X(ρ)

N (t) = η)P(X
(ρ)

N (t) = η)

P(|X(ρ)

N (t)| = r)
,

2 ≤ r ≤ N.

By the ergodicity and the time homogeneity properties of the generic CFP(N), the limits

fb(η; r,N) := lim
	t→0+

1

	t
P
(
|X(ρ)

N (t + 	t)| = r + 1 | X(ρ)

N (t) = η
)
, 1 ≤ r ≤ N − 1,

(2.6)

fd(η; r,N) := lim
	t→0+

1

	t
P
(
|X(ρ)

N (t + 	t)| = r − 1 | X(ρ)

N (t) = η
)
, 2 ≤ r ≤ N,

do not depend on t ≥ 0 and ρ, for all η ∈ �N,r , so that

λr,N =
∑

η∈�N,r

fb(η; r,N)P(X
(ρ)

N (t) = η)

P(|X(ρ)

N (t)| = r)
, 1 ≤ r ≤ N − 1,

(2.7)

μr,N =
∑

η∈�N,r

fd(η; r,N)P(X
(ρ)

N (t) = η)

P(|X(ρ)

N (t)| = r)
, 2 ≤ r ≤ N.

Next, setting in (2.7), t = 0 and ρ(ζ̃ ) = 1, for a ζ̃ ∈ �N,r , (so that P(X
(ρ)

N (0) = ζ̃ ) = 1)
it is easy to conclude that (2.7) together with the time homogeneity assumption imply

λr,N = fb(ζ̃ ; r,N) = const, μr,N = fd(ζ̃ ; r,N) = const,

for all ζ̃ ∈ �N,r , which proves the necessity of the condition (2.4). The sufficiency of
(2.4) follows immediately from (2.7), after we observe that in view of (2.6), the quantities
fd(η; r,N), fb(η; r,N) are equal respectively, to the sum of rates of single coagulations∑

η̃∼η K(η → η̃) and to the sum of rates of single fragmentations
∑

η̃∼η F (η → η̃) at a state
η ∈ �N,r . �

In the rest of this subseqtion we will treat the case when the time homogeneity condition
in Lemma 1 holds, writing simply |XN(t)|, t ≥ 0. Now our objective will be to characterize
the rates ψ(i, j),φ(i, j) that provide the condition (2.4). The condition (2.4) says that for
given N and r each one of the two limits in the RHS of (2.4) is the same for all η ∈ �N,r and
all ρ on �N. Consequently, the above condition conforms to two separate systems of linear
equations, one for ψ(i, j) and one for φ(i, j), and each one consisting of |�N,r | equations
for each 1 ≤ r ≤ N. It is easily seen that for a fixed N there is a variety of solutions to each
of these systems, which are valid for all 1 ≤ r ≤ N.
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For example, employing the aforementioned meaning of the limits fb and fd, one can
verify that for a given N > 3 the following rates depending on N satisfy (2.4):

ψ(i, j) =
{

i + j, if 2 ≤ i + j ≤ N − 1,

l1(N), if i + j = N
(2.8)

and

φ(i, j) =
{

0, if 2 ≤ i + j < N,

l2(N), if i + j = N,
(2.9)

where l1 and l2 are arbitrary nonnegative functions.
However, due to our basic assumption that the rates ψ and φ do not depend on N, time

homogeneity of the process |XN(t)| t ≥ 0 implies a very special form of the above rates of
single transitions.

Proposition 1 {|XN(t)|, t ≥ 0}N≥1 is a sequence of time homogeneous birth and death
processes induced by a sequence of {CFP(N)}N≥1 with rates of single transitions ψ(i, j)

and φ(i, j), if and only if the above rates are of the form:

ψ(i, j) = a(i + j) + b, i, j ≥ 1, a ≥ 0, 2a + b ≥ 0 (2.10)

and

vk :=
∑

1≤i≤j : i+j=k

φ(i, j) = φ(1,1)(k − 1), k ≥ 1, (2.11)

where v(k) is the sum of rates of all possible single fragmentations of a group of size k ≥ 2
into two groups, whereas v2 = φ(1,1) ≥ 0 is arbitrary.

Proof We employ the preceding lemma. Assuming that the processes |XN(t)|, t ≥ 0 are
time homogeneous for all N ≥ 1, we apply the second part of (2.4) with r = 2 to obtain

ψ(i,N − i) = μ2,N , i = 1, . . . ,N − 1, N ≥ 1.

Therefore,

ψ(i, j) = s(i + j), i, j ≥ 1, (2.12)

where s is some nonnegative function on integers which are greater or equal to 2.

Next, consider the two states η1, η2 ∈ �N,3, N ≥ 5:

η1 = (2,0, . . . ,0,

nN−2
︷︸︸︷

1 ,0, . . . ,0),
(2.13)

η2 = (1,1,0, . . . ,0,

nN−3
︷︸︸︷

1 ,0, . . . ,0).

Applying the equation fd(η1;3,N) = fd(η2;3,N), gives

2ψ(1,N − 2) + ψ(1,1) = ψ(1,N − 3) + ψ(N − 3,2) + ψ(1,2), (2.14)
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which by virtue of (2.12), is equivalent to

2s(N − 1) + s(2) = s(N − 2) + s(N − 1) + s(3), N ≥ 5.

Taking into account that the last relation should hold for all N ≥ 5, we rewrite it as s(k) −
s(k − 1) = s(3) − s(2), k ≥ 3, which proves the necessity of (2.10). For the proof of the
necessity of (2.11) we consider the quantities fb(η;2,N) for N fixed and all states η of the
form

η = (0, . . . ,0, . . . ,0,

i
︷︸︸︷

1 ,0, . . . ,0,

N−i
︷︸︸︷

1 ,0, . . . ,0) ∈ �N,2, 1 ≤ i ≤ N − 1.

Using the notation in (2.11), the condition that fb(η;2,N) should be the same for all the
above η can be written as

v(i) + v(N − i) = const, 1 ≤ i ≤ N − 1, (2.15)

or, equivalently, v(N − 1) − v(N − 2) = v(2) − v(1) = v(2). Since the latter relationship
should hold for all N ≥ 2, it implies (2.11). We turn now to the proof of sufficiency of the
conditions (2.10) and (2.11). Supposing that (2.10) holds, we have for a state η ∈ �N,r :

fd(η; r,N) =
∑

1≤i<j≤N

ψ(i, j)ninj +
∑

1≤i≤N

ψ(i, i)
ni(ni − 1)

2

= 1

2

( ∑

1≤i,j≤N

ψ(i, j)ninj −
∑

1≤i≤N

ψ(i, i)ni

)

= 1

2

( ∑

1≤i,j≤N

(
a(i + j) + b

)
ninj −

∑

1≤i≤N

(2ia + b)ni

)

(2.16)

= 1

2

(
2aNr + br2 − 2aN − br

)
, r = 2, . . . ,N,

fb(η; r,N) =
∑

1≤k≤N

v(k)nk

=
∑

1≤k≤N

v(2)(k − 1)nk = v(2)(N − r), r = 1, . . . ,N − 1.

�

Corollary 1 The rates of death and birth of a time homogeneous Markov process
|XN(t)|, t ≥ 0 are given by

μr,N = (r − 1)

2
(2aN + rb), 2 ≤ r ≤ N,

(2.17)
λr,N = φ(1,1)(N − r), 1 ≤ r ≤ N − 1.

Remark 1

(i) The birth and death process |XN(t)|, t ≥ 0 with rates given by (2.17), has the following
interpretation, not related to the generic CFP(N). Consider a nearest neighbor spin
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system (for reference see [17]) of “0”-s and “1”-s on a complete graph on N vertices
(sites). Assume that one of the sites is occupied with a “1” which never flips, while spins
at all other sites perform flips 0 → 1 and 1 → 0 with rates λ̃r,N and μ̃r−1,N respectively,
where r is the total number of sites of the graph occupied by “1”-s. (The latter says
that a site occupied by a “1” has r − 1 neighbors occupied by 1-s and a site occupied
by a “0” has r such neighbors.) Consequently, at a state with r ≥ 1 “1”-s, the total
rate of 0 → 1 flips is λr,N := (N − r)λ̃r,N and the total rate of 1 → 0 flips is μr,N :=
(r − 1)μ̃r−1,N . Therefore, the induced birth and death process, say ζN(t), t ≥ 0, on
{1, . . . ,N} depicting the number of sites occupied by “1”-s at time t ≥ 0 is Markov and
time homogeneous. Clearly, if

λ̃r,N = φ(1,1), 1 ≤ r ≤ N − 1,

μ̃r−1,N = 1

2
(2aN + br), 2 ≤ r ≤ N,

the process ζN(t) conforms to the process |XN(t)|, t ≥ 0, associated with CFP’s(N)
given by (2.10), (2.11). Finally, it is appropriate to note that after interchanging the
roles of “0”-s and “1”-s, the spin system with the rates λ̃r , μ̃r−1 as above, is known (for
N fixed) as a contact process.

(ii) It follows from Proposition 1 that the class of CFP’s(N) that induce time homogeneous
processes |XN(t)|, t ≥ 0 includes processes of pure coagulation (φ(1,1) = 0 in (2.11))
and processes of pure fragmentation (a = b = 0 in (2.10)). Also observe that the time
homogeneity requirement determines uniquely the form of rates of single coagulations,
while it leaves a certain freedom in the choice of rates of single fragmentations.

As far as we know, there are no explicit solutions, i.e. explicit formulae for transition
probabilities P(|XN(t)| = r), t ≥ 0, 1 ≤ r ≤ N, for birth-death processes with the rates
given by (2.17), when a, b > 0, ψ(1,1) > 0 and the initial distribution is concentrated
on some state ζ ∈ �N. The problem here is that the birth and death rates in (2.17) are
polynomials in r of different degrees, which are 1 and 2 respectively. A survey of solvable
birth-death processes with polynomial rates is given in [22].

We will see in the next subsection that under the above condition of time homogeneity of
|XN(t)|, t ≥ 0 and certain initial distributions ρ, the corresponding CFP’s(N) are solvable.

2.2 Solvable CFP’s

Let a CFP(N) considered start from an initial distribution ρ on �N, with projections ρr on
the sets �N,r , r = 1, . . . ,N :

ρr(η) :=
{

ρ(η | |η| = r), η ∈ �N,r , if ρ(�N,r ) := ρ(|η| = r) > 0,

0, η ∈ �N,r , if ρ(�N,r ) = 0.
(2.18)

It is in order to note that the set of all distributions ρ on �N with given projections ρr, is

{

ρ : ρ(η) = ρr(η)ρ(�N,r ), η ∈ �N,r ,

N∑

r=1

ρ(�N,r ) = 1, ρ(�N,r ) ≥ 0, r = 1, . . . ,N

}

,

(2.19)
i.e. the projections ρr, r = 1, . . . ,N define the associated distribution ρ up to the factors
ρ(�N,r ), r = 1, . . . ,N in (2.19).
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Accordingly, we write

pρ(η; t) = P

(
X

(ρ)

N (t) = η | |X(ρ)

N (t)| = |η|
)

P

(
|X(ρ)

N (t)| = |η|
)

:= Q(η,ρ; t) b(|η|, ρ; t), η ∈ �N, t ≥ 0, (2.20)

where Q(η,ρ; t) and b(|η|, ρ; t) denote respectively the first and the second factors in the
RHS of the first line, while the conditional probability Q obeys the initial conditions

Q(η,ρ;0) = ρr(η), η ∈ �N,r , r = 1, . . . ,N, (2.21)

for any ρ on �N, which follow from the definitions of Q and ρr .

We will be interested in CFP’s possessing a conditional probability Q not depending of
time under certain initial distributions ρ. If this is the case, it follows from (2.21) that

Q(η,ρ; t) = ρr(η), η ∈ �N,r , r = 1, . . . ,N, t ≥ 0. (2.22)

Obviously, time independence (2.22) holds for any CFP(N) starting from its stationary
distribution. In view of this, we adopt the following convention.

Definition 1 A CFP(N) possesses a time independent conditional probability Q if (2.22)
holds for certain projections ρr on �N,r , r = 1, . . . ,N and all initial distributions ρ on �N

from the associated set (2.19).
Next we write the Kolmogorov system for a birth and death process |X(ρ)

N (t)|, t ≥ 0 with
rates λr,N (t;ρ), μr,N (t;ρ):

ḃ(r, ρ; t) = −b(r, ρ; t)(λr,N (t;ρ) + μr,N (t;ρ)
) + b(r + 1, ρ; t)μr+1,N (t;ρ)

+ b(r − 1, ρ; t)λr−1,N (t;ρ), r = 1, . . . ,N, (2.23)

where b(0, ρ; t) = b(N + 1, ρ; t) = 0, t ≥ 0.

The following assertion is crucial for our study.

Proposition 2
The following two conditions (i) and (ii) are equivalent.

(i) A CFP(N) possesses a conditional probability Q independent of time t ≥ 0;
(ii) The birth and death process |XN(t)|, t ≥ 0 is time homogeneous.

Moreover, the projections ρr, r = 1, . . . ,N defining by (2.22) the time independent con-
ditional probability Q are the unique solution of the two systems of equations:

μr+1,Nρr(η) =
∑

ζ∈ �N,r+1: ζ∼η

ρr+1(ζ )K(ζ → η), η ∈ �N,r , r = 1, . . . ,N − 1, (2.24)

λr,Nρr+1(ζ ) =
∑

η∈ �N,r : η∼ζ

ρr(η)F (η → ζ ), ζ ∈ �N,r+1, r = 1, . . . ,N − 1, (2.25)

where the rates of state transitions F and K are given by (1.1), (2.10), (2.11), while the
rates of birth and death are as in (2.17).
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Proof We substitute (2.20) in the Kolmogorov system (2.1) to obtain

ḃ(r, ρ; t)Q(η,ρ; t) + Q̇(η,ρ; t)b(r, ρ; t)

= −Q(η,ρ; t)b(r, ρ; t)
( ∑

ζ∈ �N,r−1: ζ∼η

K(η → ζ ) +
∑

ζ∈ �N,r+1: ζ∼η

F (η → ζ )

)

+ b(r + 1, ρ; t)
∑

ζ∈�N,r+1: ζ∼η

Q(ζ,ρ; t)K(ζ → η)

(2.26)
+ b(r − 1, ρ; t)

∑

ζ∈�N,r−1: ζ∼η

Q(ζ,ρ; t)F (ζ → η),

η ∈ �N,r , r = 1, . . . ,N, t ≥ 0,

�0,N = �N,N+1 = ∅, b(0, ρ; t) = b(N + 1, ρ; t) = 0, t ≥ 0.

We firstly prove the implication (ii) ⇒ (i). We substitute in the LHS of (2.26) the ex-
pression for the derivative ḃ(r, ρ; t) from (2.23), assuming that the process |XN(t)|, t ≥ 0
is time homogeneous and that the initial distribution is ρ. Then, by virtue of Lemma 1, the
system (2.26) becomes

Q(η,ρ; t)
(
b(r + 1, ρ; t)μr+1,N + b(r − 1, ρ; t)λr−1,N

)
+ Q̇(η,ρ; t)b(r, ρ; t)

= b(r + 1, ρ; t)
∑

ζ∈�N,r+1: ζ∼η

Q(ζ,ρ; t)K(ζ → η)

+ b(r − 1, ρ; t)
∑

ζ∈�N,r−1: ζ∼η

Q(ζ,ρ; t)F (ζ → η), (2.27)

η ∈ �N,r , r = 1, . . . ,N, t ≥ 0,

�0,N = �N,N+1 = ∅, b(0, ρ; t) = b(N + 1, ρ; t) = 0, t ≥ 0, for all ρ on �N,

where by the assumption made, the rates K(ζ → η) and F(η → ζ ) of state transitions
are implied by (2.10), (2.11) respectively and the birth and death rates are as in Corollary 1.
Given an initial distribution ρ, constants a, b and fragmentation rates φ(i, j) obeying (2.11),
a finite Kolmogorov system (2.27) has a unique solution Q, provided a2 +b2 +φ(1,1) > 0.

In particular, (2.27) is satisfied by the time-independent Q, such that (2.22) holds for all
initial distributions ρ with the projections ρr, r = 1, . . . ,N that obey (2.24), (2.25).

To prove the implication (i) ⇒ (ii), we observe that by virtue of (2.7), the condition (i)
implies that the birth and death rates do not depend on t ≥ 0. By our remark after (2.3) this
leads to the conclusion that the rates do not depend on ρ either.

Next, we set t = 0 in (2.27) to derive by virtue of Definition 1 and the time homogeneity
of |XN(t)|, t ≥ 0, that the projections ρr, r = 1, . . . ,N should obey (2.24) and (2.25).

It is left to show the existence and uniqueness of the solution ρr, r = 1, . . . ,N for the
system of (2.24), (2.25), where the rates of state transitions are induced by ψ and φ as in
(2.10), (2.11). Recalling Lemma 1, we treat the ratios

PC(ζ → η) := K(ζ → η)

μr+1,N

, ζ ∈ �N,r+1, η ∈ �N,r , ζ ∼ η, r = 1, . . . ,N − 1

as the one-step transition probabilities of a discrete time nearest-neighbor “coagulation”
random walk on the set of partitions �N. Then ρr(η), η ∈ �N,r , in (2.24) can be interpreted
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as the probability that the random walk starting at η∗ = (N,0, . . . ,0) ∈ �N,N reaches a
given state η ∈ �N,r at the (N − r)-th step, so that ζ ∗ = (0, . . . ,1) is the absorbing state.
In a similar manner, we consider the nearest neighbor “fragmentation” random walk on �N

with the transition probabilities

PF (η → ζ ) := F(η → ζ )

λr,N

, η ∈ �N,r , ζ ∈ �N,r+1, ζ ∼ η, r = 1, . . . ,N − 1,

that starts at ζ ∗ = (0, . . . ,0,1) ∈ �N,1. In this case, ρr(η), η ∈ �N,r in the set of equations
(2.25) is the probability that the “fragmentation” random walk reaches a given state η ∈ �N,r

at the (r − 1)-th step, η∗ = (N, . . . ,0) being the absorbing state. Clearly, each one of the
two systems has a unique solution ρr, r = 1, . . . ,N whenever a2 + b2 > 0 in the first case
and φ(1,1) > 0 in the second case.

We demonstrate that when (a2 + b2)φ(1,1) > 0 (=both coagulation and fragmenta-
tion hold), the two systems of equations have the same solution if and only if the tran-
sition probabilities PC and PF are related in the following way. Let ρr, r = 1, . . . ,N

be the probabilities corresponding to the “coagulation” random walk, under some fixed
a, b : a2 + b2 > 0 in (2.10). Then (2.25) for the “fragmentation” random walk have the
same solution ρr, r = 1, . . . ,N if and only if

ρr(η)PF (η → ζ ) = ρr+1(ζ )PC(ζ → η), η ∈ �N,r , ζ ∈ �N,r+1, η ∼ ζ. (2.28)

The sufficiency of (2.28) is seen immediately, while the necessity can be derived from the
following general reasoning, based on the observation that each one of (2.24) and (2.25)
is time reversal of the other one. Let ρr, r = 1, . . . ,N be the common solution of (2.24)
and (2.25). Then from (2.24), applied for r = N −2, we conclude that under given ρN−1 and
ρN−2, the values a, b in (2.10) are uniquely determined. Hence, ρr, r = 1, . . . ,N uniquely
determine all probabilities PC in (2.24) induced by (2.10). If now some P̃F satisfies (2.25)
under the above ρr, r = 1, . . . ,N, then (2.24) should be satisfied by

P̃C(ζ → η) = ρr(η)P̃F (η → ζ )

ρr+1(ζ )
.

The aforementioned uniqueness of the probability PC proves the claim. (In the discussion
following the proof we find explicitly the solution ρr, r = 1, . . . ,N and demonstrate that
the rates of single fragmentations derived from (2.28) satisfy the condition (2.11).) �

Our next purpose will be to find explicitly the solution ρr(η), η ∈ �N,r , r = 1, . . . ,N

of (2.24), (2.25), in the case when the time homogeneous process |XN(t)|, t ≥ 0 is given
by (2.17). Since the sets �N,1,�N,N are singletons, it follows from the definition of the
conditional probability ρr that ρN(η∗) = 1, ρ1(ζ

∗) = 1. The following two cases should be
broadly distinguished.

Case 1: Non zero coagulation, i.e. a2 + b2 > 0.

Following the illuminating idea of Hendriks et al. [13], we will seek the probabilities ρr

in question in the form

ρr(η) = ρN,r (η) =
(
BN,r

)−1 a
n1
1 a

n2
2 . . . a

nN

N

n1!n2! . . . nN ! ,

η = (n1, . . . , nN) ∈ �N,r , r = 1, . . . ,N, (2.29)
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where BN,r is the normalizing constant (=partition function) known as the (N, r) partial
Bell polynomial (see e.g. [4, 21]) induced by the sequence of weights {ak}∞

1 that do not
depend neither on N nor r . It follows from (2.29) that for given η = (n1, . . . , nN) ∈ �N,r ,

such that ni+j > 0 for some 2 ≤ i + j ≤ N, and ζ = η(i,j) ∈ �N,r+1,

ρr+1(ζ )

ρr(η)
=

(
BN,r

BN,r+1

)
⎧
⎨

⎩

(
aiaj

ai+j
) (

ni+j

(ni+1)(nj +1)
), if i �= j,

(
a2
i

a2i
) (

n2i

(ni+1)(ni+2)
), if i = j.

(2.30)

Hence, setting, in accordance with Proposition 1 and (1.1),

K(η(i,j) → η) =
{

(a(i + j) + b)(ni + 1)(nj + 1), if i �= j,

(2ia + b)
(ni+1)(ni+2)

2 , otherwise,
(2.31)

where a2 + b2 > 0, the system (2.24) conforms to

μr+1,N =
(

BN,r

BN,r+1

) N∑

k=2

(ak + b)
∑

i+j=k aiaj

2ak

nk,

(n1, . . . , nN) ∈ �N,r , r = 1, . . . ,N − 1. (2.32)

Since the RHS of (2.32) should not depend on η ∈ �N,r the equations are solved by the
weights defined recursively by

ak = (ak + b)
∑

i+j=k aiaj

2(k − 1)
, k ≥ 2, a1 = 1. (2.33)

This is just the solution obtained, by quite different considerations, in [13] (see (18)
there), for pure coagulation processes.

Continuing (2.32), we get

μr+1,N =
(

BN,r

BN,r+1

) N∑

k=2

(k − 1)nk, (2.34)

(n1, . . . , nN) ∈ �N,r , r = 1, . . . ,N − 1, (2.35)

which leads to the following relation between the constants μr+1,N , BN,r , BN,r+1 induced
by the weights (2.33):

μr+1,N = (N − r)

(
BN,r

BN,r+1

)

, r = 1, . . . ,N − 1. (2.36)

Taking into account that BN,N = aN
1

N ! = (N !)−1, we get the explicit expressions for the Bell
polynomials in the case considered:

BN,r =
∏N

l=r+1 μl,N

N !(N − r)! , r = 1, . . . ,N − 1, (2.37)

where μl,N as in (2.17). Remarkably, the expression (2.37) for the Bell polynomials enables
us to find explicitly the weights ak, k ≥ 1, without solving the recurrence relation (2.33). In
fact, by (2.29),
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aN = BN,1 =
∏N

r=2 μr,N

N !(N − 1)! , N ≥ 2, (2.38)

which can be written as

a1 = 1, ak =
∏k

r=2(ka + br
2 )

k! , k ≥ 2, 2a + b > 0, a ≥ 0. (2.39)

Remark 2 The recurrence relation (2.33) can be viewed as a modification of the classic
convolution formula,

ak = 1

2

∑

i+j=k

aiaj , k = 2, . . . , a1 = 1,

which determines the Catalan numbers (see e.g. [16]). It is interesting to find the generating
function g(x) = ∑∞

k=1 akx
k for the sequence of weights {ak}∞

1 , defined by (2.33). Setting
y(x) = g(x)

x
, it follows from (2.33) that the function y obeys the differential equation

y ′(1 − axy) = y2a2, a2 = 2a + b

2
, y(0) = a1 = 1,

which implicit solution is given by

y(x) =
(

1 + b

2
xy

) 2a+b
b

, b > 0.

We now recover the fragmentation rates given by (2.28) in the case of coagulation
rates (2.31). By (2.30), (2.36) and (2.17) we have

F(η → ζ ) = φ(1,1)

⎧
⎨

⎩

(
aiaj ni+j

ai+j
) (a(i + j) + b), if i �= j,

(
a2
i

n2i

2a2i
) (2ai + b), if i = j

(2.40)

for η = (n1, . . . , nN) ∈ �N,r , such that ni+j > 0 for some 2 ≤ i + j ≤ N, and ζ = η(i,j) ∈
�N,r+1. Note that by (2.33), the rates of single fragmentations induced by (2.40) satisfy the
condition (2.11). This latter condition appears to have a physical meaning in the context of
CFP’s describing polymerization (see [23]).

Also note that in the case considered, ρr(η) > 0, η ∈ �N,r , r = 1, . . . ,N and that the
rates of single transitions are determined by (2.40) up to the constants a, b and φ(1,1).

Case 2: Pure fragmentation.
It is clear from the preceding discussion that under the fragmentation rates of the form

(2.40) (with a, b that are not related to coagulation rates) the solution ρr of (2.25) is given
by (2.29). However, in contrast to the case of pure coagulation, Proposition 1 leaves freedom
for the choice of rates of single fragmentations obeying (2.11). In view of this, the proba-
bilities ρr solving (2.25) will depend on a particular choice of the above rates, so that ρr ,
will be of Hendriks et al. form (2.29) if and only if the rates of single fragmentations are
induced by (2.40). This is illustrated by the toy example below. (We recall that under all
above choices of rates of single fragmentations, the rates of the induced pure birth process
remain the same: λr = φ(1,1)(N − r), r = 1, . . . ,N .)
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Example 2 Let

φ(i, j) = φ(1,1)

{
(i + j − 1), if i = 1 or j = 1,

0, otherwise,
(2.41)

so that (2.11) holds. The corresponding fragmentation random walk is in effect a determin-
istic chain on N states ζ1, . . . , ζr , . . . , ζN , such that

ζr = (r − 1,0, . . . ,0,

N−r+1
︷︸︸︷

1 ,0, . . . ,0) ∈ �N,r , 1 ≤ r ≤ N − 1,

ζN = (N,0, . . . ,0).

Consequently, (2.25) implies ρr(η) = 1ζr (η), η ∈ �N,r , which is not of the form (2.29).
The preceding discussion is summarized in our main theorem.

Theorem 1 (Solvable CFP’s) Mean-field CFP’s X
(ρ)

N (t), t ≥ 0 with rates of single tran-
sitions (2.10) and (2.11) and initial distributions ρ on �N, s.t. ρr on �N,r , r = 1, . . . ,N

satisfy (2.24), (2.25), have time dynamics given by

pρ(η; t) = ρr(η) b(r, ρ; t), η ∈ �N,r , r = 1, . . . ,N, t ≥ 0, (2.42)

where b(r, ρ; t) are transition probabilities of the associated time homogeneous birth and
death process |X(ρ)

N (t)|, t ≥ 0 with rates (2.17). In particular, if rates of single coagula-
tions are positive, then ρr is given by (2.29), (2.37) and (2.39), while in the case of pure
fragmentation ρr, r = 1, . . . ,N satisfying (2.25) are as before, if and only if (2.40) holds.

Note that under b = 0 in (2.17), the corresponding birth and death process is known as
the Ehrenfest process (=urn model).

Remark 3 (Initial distributions ρ) CFP’s(N) with single transitions (2.10), (2.11) but with
initial distributions ρ that do not obey the equations (2.24), (2.25) in Proposition 2 are not
solvable, since in this case the conditional probability Q depends on t ≥ 0 and ρ, though
the processes |X(ρ)

N (t)|, t ≥ 0 are time homogeneous.

Remark 4 (Transition rule for Gibbs fragmentation) We now explain that the probabilities
PF induced by the positive fragmentation rates (2.40) define the following simple rule of a
state transition via a fragmentation from η ∈ �N,r to η(i,j) ∈ �N,r+1. By (2.33),

PF (η → η(i,j)) = (i + j − 1)ni+j

N − r

⎧
⎨

⎩

aiaj ( 1
2

∑
l+m= i+j alam)−1, if i �= j,

a2
i

2 ( 1
2

∑
l+m=2i alam)−1, if i = j.

(2.43)

Under a given η = (n1, . . . , nN) ∈ �N,r , the first factor in the above expression is the
probability that a component of size i + j ≥ 2 is selected to fragmentate, while the second
factor specifies the probability that, conditioned on the first event, the selected component
splits into two components of given sizes i and j . As a result, (2.43) conforms to a transition
procedure postulated in [4], in which the first and the second factors are called the linear
selection rule and the Gibbs splitting rule respectively. Theorem 1 and Proposition 2 say
that the mean-field transition mechanism (2.43) is forced by the requirement that the process
|XN(t)|, t ≥ 0 is time homogeneous and the rates of single coagulations are positive.
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A Historical Note This note concerns exclusively the research on solvable CFP’s. Time
evolution of the stochastic model of pure coagulation was formulated by Marcus [19] who
was also apparently the first to reveal the relationship between Kolmogorov equations and
its deterministic analog presented by Smoluchowski equations. Solutions to Smoluchowski
equations for pure coagulation with kernels K induced by φ(i, j) ≡ const, φ(i, j) = i + j

and φ(i, j) = ij were obtained long ago by researchers in the field of colloid aerosol chem-
istry (for references see [1, 19]). Lushnikov [18] derived explicit formulae for the expected
numbers Enj (t), t ≥ 0, j = 1, . . . ,N for the process X

(ζ)

N (t), t ≥ 0 of pure coagulation
with φ(i, j) = i + j, i, j ≥ 1, with the help of the generating function for transition prob-
abilities pζ (η; t), t ≥ 0, ζ, η ∈ �N. The aforementioned stochastic model is known as the
Marcus-Lushnikov process. In [18], treating Smoluchowski equations as an approximation
to Kolmogorov ones, Lushnikov proved the important fact that the solution to Smoluchowski
coagulation equations with a general coagulation kernel, can be presented as a mixture of
Poisson distributions with time dependent parameters. (Note that these parameters were
found explicitly for the Marcus -Lushnikov model only.) A further important contribution
was made by Hendriks, Spouge, Eibl and Schreckenberg [13] who found explicitly the tran-
sition probabilities pζ (η; t), t ≥ 0, ζ, η ∈ �N for a more general Marcus-Lushnikov model
with φ(i, j) as in (2.10). This result, proven via a combinatorial argument, is based on the
representation (2.20) with time independent conditional probability Q.

2.3 Discussion of the Main Result

• Steady state distribution. Firstly, consider solvable CFP’s with nonzero rates of single
coagulations and fragmentations. By (1.1), (2.31), (2.40) and Theorem 1, the implied
rates ψ,φ of single coagulations and fragmentations respectively, are

ψ(i, j) = a(i + j) + b, φ(i, j) = φ(1,1)
aiaj

ai+j

(
a(i + j) + b

)
, i, j ≥ 1, φ(1,1) > 0,

where aj , j ≥ 1 are given by (2.39). Thus, the ratio of the above rates is equal to

ψ(i, j)

φ(i, j)
= aiaj

φ(1,1)ai+j

, i, j ≥ 1. (2.44)

Setting in (2.44) ãi = ai

φ(1,1)
, gives

ψ(i, j)

φ(i, j)
= ãi ãj

ãi+j

, i, j ≥ 1,

which shows that the criteria of reversibility of mean- field CFP’s (see [5]) is fulfilled.
Moreover, by Theorem 1, the above process is the only reversible process, within the class
of solvable mean-field CFP’s. By virtue of (2.42), the invariant measure νN of the process
considered is

νN(η) = b(r)ρr(η), η ∈ �N,r , r = 1, . . . ,N, (2.45)

where b(r) = limt→∞ b(r, ρ; t) is the invariant measure of the associated ergodic birth and
death process (see for reference [2]). The probability measures ρr on �N,r , r = 1, . . . ,N

defined by (2.29), (2.37), (2.39), belong to the class of multiplicative measures (=Gibbs
distributions) which play also a role in the theory of random combinatorial structures (see
[6–8, 21, 24]). The explicit expression for the measure νN is obtained in a straightforward
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way from the known form (see [5]) of the invariant measure of a reversible CFP with
rates (2.44):

νN(η) = (cN)−1
( ã

n1
1 ã

n2
2 . . . ã

nN

N

n1!n2! . . . nN !
)
, η ∈ �N, (2.46)

where cN is the partition function of the measure νN . Next, we embark on an analysis of
the asymptotic behaviour of the measure νN, as N → ∞. For this purpose we need to
know the asymptotics of the weights {ak}∞

1 . By (2.39),

ak =
⎧
⎨

⎩

( b
2 )k−1

k!
∏k

r=2(
2a
b
k + r) = ( b

2 )k−1(k!( 2a
b
k)( 2a

b
k + 1))−1( 2a

b
k)k+1, if b �= 0,

ak−1kk−1

k! , if b = 0,

(2.47)

where k ≥ 1 and (z)n := z(z + 1) . . . (z + n − 1) = �(z+n)

�(z)
is the Pochhammer symbol.

Applying the Stirling’s approximation, gives, as k → ∞,

ak ∼

⎧
⎪⎨

⎪⎩

C1C
k
2 k− 3

2 , if ab > 0,

( b
2 )k−1, if a = 0, b > 0,

C3C
k
4 k− 3

2 , if b = 0, a > 0,

(2.48)

where C1 = C1(a, b), C2 = C2(a, b), C3 = C3(a), C4 = C4(a) are positive constants.
The measure νN in (2.46) is invariant under the transformations of the weights ak →
Ckak, with any constant C > 0. Thus, the asymptotic behaviour of the measure νN con-
sidered is identical to the one with the weights

a′
k ∼

⎧
⎪⎨

⎪⎩

C1 k− 3
2 , if ab > 0,

const, if a = 0, b > 0,

C3 k− 3
2 , if b = 0, a > 0,

(2.49)

as k → ∞. In accordance with the classification suggested in [3] for multiplicative mea-
sures νN with regularly varying weights ak ∼ kα, k → ∞, the measure νN considered
belongs to the convergent class (α < −1) in the first and the third cases in (2.49), while
in the second case in (2.49) it belongs to the expansive class (α > −1). It was shown in
[3] that the convergent class of νN exhibits a strong gelation, as N → ∞: with a positive
probability all groups cluster in one huge component of size close to N. In contrast to
this, (see [8]), the expansive measures νN have, with probability 1, as N → ∞, a thresh-

old value N
1

α+2 for the size of the largest group in the associated random partition. In the
context of the CFP considered the above crucial difference is easily explained by noting
that the first and the third cases in (2.49) correspond to a “strong” coagulation, while the
second case corresponds to a coagulation with a constant rate.

Clearly, pure coagulation and pure fragmentation processes XN(t), t ≥ 0 have the
absorbing states η∗ = (0, . . . ,1) and ζ ∗ = (N,0, . . . ,0) respectively.

In the conclusion consider a non-solvable CFP(N) as in Remark 3. In view of the
ergodicity of this process, its invariant measure will be identical to the one of a solvable
CFP, starting from any distribution ρ on �N with the gibbsian projections ρr on �N,r ,

r = 1, . . . ,N, given by (2.29).
• CFP’s on set partitions. These are processes with values in the space �[N] of partitions of

the set [N ] = {1,2, . . . ,N} (=set partitions). From the physical point of view, this means



On Time Dynamics of Coagulation-Fragmentation Processes 583

that, in the setting of this paper, the N particles are labelled, so that clusters forming a
state of the process are subsets of the set [N ]. �[N]-valued CFP’s are a generalization of
Kingman’s coalescent that provided a mathematical framework for a variety of genetic
models, in particular the Ewens sampling formula. Kingman’s theory, which is surveyed
in [21], is based on the theory of exchangeable partitions. The development of Kingman’s
coalescent by Pitman [21] and his colleagues lead to Gibbs partitions as distributions of
�[N]-valued irreversible processes of pure fragmentation or pure coagulation. Formally,
the linkage between �N -valued and �[N]-valued CFP’s is expressed via a simple combi-
natorial formula and it is discussed in [4, 7, 21]. Among CFP’s on �[N], Gibbs fragmen-
tation processes introduced in [4] by N . Berestycki and Pitman play a central role. These
processes are defined as time homogeneous Markov chains 
(t) ∈ �[N], t ≥ 0 of pure
fragmentation, such that the conditional distribution of 
(t) given the number of blocks
of the random set partition 
(t) is a microcanonical Gibbs distribution not depending
of t ≥ 0. In terms of CFP’s on �N, the above conditional distributions are just the dis-
tributions (2.29) on �N,r , 1 ≤ r ≤ N. Correspondingly, the time reversal of the above
process is called Gibbs coagulation. In [4] the authors posed a problem of characteriza-
tion of the weights (in their notation) ωk := akk! for which there exist Gibbs fragmentation
processes, and they proved that, under the assumption that the fragmentation rates are de-
fined by recursive and selection rules (2.43), the unique Gibbs distribution is given by
the weights (2.33). In [4, p. 393] it was conjectured that some other, more complicated
splitting rules might be of interest. We will demonstrate (see Proposition 3 below) that
the aforementioned characterization of weights is valid for a broad class of fragmentation
rules, that includes the above one in [4].

The problem reduces (see Problem 2 in [4]) to the characterization of weights ak , k ≥ 1
(not depending of N ) and transition probabilities of fragmentations PF that satisfy (2.25):

ρN,r+1(ζ ) =
∑

η∈ ρN,r : η∼ζ

ρN,r (η)PF (η → ζ ), ζ ∈ �N,r+1, r = 1, . . . ,N − 1, (2.50)

when ρN,r is a Gibbs measure (2.29) on �N,r . Regarding the probabilities PF , we assume
that they are of the following general form implied by the mean-field property:

PF (η → η(i,j)) = ni+jφ(i, j)

c(η)
, η = (n1, . . . , nN) ∈ �N, (2.51)

where φ(i, j) is a symmetric nonnegative function not depending of N and c(η) =∑
1≤i≤j≤N ni+jφ(i, j) is the normalizing constant. Clearly, (2.43) is a particular case

of (2.51).
For our subsequent considerations it is important to note that in (2.29) all weights

ak, k ≥ 1 should be positive, due to the fact that aN

BN,1
= 1, N ≥ 1.

Proposition 3 Under the assumption (2.51), Gibbs distributions ρN,r , r = 1, . . . ,N sat-
isfy (2.50) if and only if the weights ak in (2.29) are given by (2.33) and the rates φ(i, j) of
single fragmentations are the same as in (2.40).

Proof We assume that Gibbs distributions ρN,r , 1 ≤ r ≤ N satisfy (2.50). Treating (2.50)
when r = 1 and

ζ = (0, . . . ,

i
︷︸︸︷

1 , . . . ,0,

N−i
︷︸︸︷

1 ,0, . . . ,0) ∈ �N,2, i = 1, . . . ,N − 1,
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gives
(

BN,2

BN,1

)(
aN

aiaN−i

)(
φ(i,N − i)

vN

)

= 1, (2.52)

if N �= 2i and
(

B2i,2

B2i,1

)(
a2i

1
2 a2

i

)(
φ(i, i)

v2i

)

= 1,

if N = 2i, where in both cases vk > 0 is defined as in (2.11). Since BN,1 = aN, we have

0 < φ(i,N − i) = vN

BN,2

{
aiaN−i , if N �= 2i,
1
2a2

i , if N = 2i.
(2.53)

Secondly, applying (2.50) for r = 2 with

ζ ∈ �N,3 : ζ(k1) = ζ(k2) = ζ(N − k1 − k2) = 1,

where k1, k2,N − k1 − k2 are distinct positive integers, gives

1 =
3∑

i=1

ρN,2(ηi)

ρN,3(ζ )
PF (ηi → ζ ), (2.54)

where

η1 ∈ �N,2 : η1(k1) = η1(N − k1) = 1, η2 ∈ �N,2 : η2(k2) = η2(N − k2) = 1,

η3 ∈ �N,2 : η3(k1 + k2) = η3(N − k1 − k2) = 1

denote the three states from which it is possible to arrive, via one step fragmentation, at the
above state ζ ∈ �N,3. Substituting in (2.54) the expression (2.53) for φ and using (2.30), we
obtain

1 =
(

BN,3

BN,2

)(
aN−k1vN−k1

BN−k1,2(vk1 + vN−k1)
+ aN−k2vN−k2

BN−k2,2(vk2 + vN−k2)

+ ak1+k2vk1+k2

Bk1+k2,2(vk1+k2 + vN−k1−k2)

)

. (2.55)

We set now for a given N ≥ 3,

fN(k) := akvk

Bk,2(vk + vN−k)
, 2 ≤ k ≤ N − 1.

This allows us to rewrite (2.55) as

fN(N − k1) + fN(N − k2) + fN(k1 + k2) = C(N), N ≥ 3, (2.56)

where C = C(N) is a constant w.r.t. k1, k2 : N − k1 ≥ 2, N − k2 ≥ 2, k1 + k2 ≥ 2.

The solution of (2.56) is given by a linear function

fN(k) = ANk + BN > 0, 2 ≤ k ≤ N ≥ 3
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and the constant C = 2ANN + 3BN , N ≥ 3, where the reals AN , BN : AN ≥ 0, 2AN +
BN > 0. As a result, the following relation is derived

akvk

Bk,2(vk + vN−k)
= ANk + BN, 2 ≤ k ≤ N ≥ 3. (2.57)

We will show that (2.57) forces the weights ak, k ≥ 2 to satisfy (2.33). Let

0 ≤ Hk := lim sup
N→∞

(ANk + BN),

for any fixed k ≥ 2. Hk = ∞ is impossible because vk > 0, k ≥ 2, by (2.53). Hence, Hk ≥ 0
is finite for all k ≥ 2, which implies

0 ≤ A := lim sup
N→∞

AN < ∞, B := lim sup
N→∞

BN < ∞. (2.58)

Recalling that v1 = 0, we apply (2.57) with N = k + 1, k ≥ 2 and N = 2k, k ≥ 2, to get

ak

Bk,2
= Ak+1k + Bk+1, k ≥ 2

and
ak

2Bk,2
= A2kk + B2k, k ≥ 2

respectively. In view of (2.58), the last two relations are in agreement if and only if
A = B = 0, so that from (2.57) we recognize that

lim
N→∞

vN−k = ∞, k ≥ 1.

Consequently, letting

z := lim sup
N→∞

vN

vN−1
≥ 1,

and denoting

akvk

Bk,2
= ek > 0, k ≥ 2,

one obtains from (2.57)

ek = lim
N→∞

vN−k(ANk + BN) = z−k(ak + b), k ≥ 1,

where

0 ≤ ã := lim
N→∞

vNAN < ∞, b̃ =: lim
N→∞

vNBN < ∞. (2.59)

Substituting the expression for ek into (2.57) leads to the following relation

z−k(ãk + b̃)

vk + vN−k

= ANk + BN, 1 ≤ k ≤ N − 1,

which implies

z−k(ãk + b̃) + z−(N−k)(ã(N − k) + b̃)

vk + vN−k

= NAN + 2BN, 1 ≤ k ≤ N − 1. (2.60)
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Supposing z > 1, we obtain, in view of (2.59),

z−k(ãk + b̃) = lim
N→∞

vN−k(NAN + 2BN)

=
{

∞, if ã �= 0,

z−k(limN→∞(NvNAN) + 2b̃), otherwise,
k ≥ 1. (2.61)

In both cases this leads to contradiction, since in the case ã = 0, we should have b̃ > 0,
by the definition of ek . Hence, z = 1. By (2.60), this means that for a fixed N, the sum
vk + vN−k does not depend on k, so that vk is linear in k, namely vk = φ(1,1)(k − 1), since
v1 = 0, v2 = φ(1,1). As a result, (2.57) becomes

ak(k − 1)

Bk,2
= (N − 2)ANk + (N − 2)BN = ãk + b̃

φ(1,1)
:= ak + b, 2 ≤ k ≤ N ≥ 3,

since the LHS does not depend on N . Recalling now the definition of Bk,2, gives (2.33). �

Remark 5 (i) In [4], Berestycki and Pitman characterized the Gibbs solutions of (2.50) in the
particular case of state transitions (2.43). Our solution (2.39) derived under a more restricted
mean-field assumption (2.51) has the same form as in [4], but with less freedom on the
constants a, b.

(ii) The weights wk = akk! in the form of a finite product of linear factors appear also as
a solution of a quite different characterization problem. Gnedin and Pitman [9], extending
Kerov’s result [15], proved that an infinite sequence {
N }, N ≥ 1 of Gibbs random parti-
tions of [N ] is exchangeable if and only if in (2.29) the weights, say w̃k = ãkk!, are of the
form

w̃k =
k−1∏

l=1

(
b̃l − ã

)
, k ≥ 2, w1 = 1, b̃ ≥ 0, ã ≤ b̃.

In contrast to (2.39), the linear factors of w̃k do not depend k.

The first part of the following corollary gives an answer to Problem 3 in [4], in the class
of mean-field CFP’s, while the second part recovers Proposition 1 in the above paper, in the
aforementioned class of models.

Corollary 2 For N large enough there do not exist mean-field Gibbs fragmentation
processes on �[N], with weights wk = (k − 1)!, k ≥ 1 and wk ≡ const, k ≥ 1.

Proof Recalling that wk = akk!, k ≥ 1, both assertions follow from (2.49) which says that
the asymptotics, as k → ∞ of the two types of weights in question are not of the form
required in Proposition 3. �

Remark 6 In a recent paper [10] a non mean-field Gibbs fragmentation process with weights
wk = (k − 1)!, k ≥ 1 was constructed. The construction based on the Chinese restaurant
model for simulation of uniform random permutation, results in a Gibbs fragmentation
process with state transitions not obeying the mean field form (2.51).

• Spectral gap. By virtue of (2.42), the spectral gap of the solvable CFP’s considered is
equal to the one of the Markov time homogeneous birth and death process |X(ρ)

N (t)|,
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t ≥ 0 with the rates of birth λr = λr,N = φ(1,1)(N − r), r = 1, . . . ,N − 1 and rates of
death μr = μr,N = r−1

2 (2aN + rb), r = 1, . . . ,N. We shall employ Zeifman’s method as
described in [12], to find the spectral gap, say βN, of the above birth and death process.
Recalling that λN = μ1 = 0, consider the N − 1 quantities

αr = αr( �δ ) := λr + μr+1 − δr+1λr+1 − μr

δr

, r = 1, . . . ,N − 1, (2.62)

where �δ = �δN = (δr = δr,N > 0, r = 2, . . . ,N − 1) is a vector of unknowns δr . The
method states that

(i) For any vector �δ,
min{αr, 1 ≤ r ≤ N − 1} ≤ βN ≤ max{αr, 1 ≤ r ≤ N − 1}.

(ii) In the case of an ergodic birth and death process, there exists a unique vector �δ, such
that all N − 1 quantities αr are equal, so that their common value is equal to βN.

In our case (2.62) conforms to

αr = φ(1,1)(N − r) + r

2

(
2aN + (r + 1)b

) − φ(1,1)(N − r − 1)δr+1

− (r − 1)(2aN + rb)

2δr

, r = 1, . . . ,N − 1. (2.63)

Setting in (2.63) δr = 1, r = 2, . . . ,N − 1, we obtain

αr = φ(1,1) + aN + br, r = 1, . . . ,N − 1,

from which the following two-sided bound for the β is derived:

φ(1,1) + aN + b ≤ βN ≤ φ(1,1) + aN + b(N − 1).

In particular, if b = 0, the preceding relation gives the exact value of the spectral gap
βN = φ(1,1) + aN.
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